无码少妇一区二区三区免费,妓院一钑片免看黄大片,国语自产视频在线,亚洲AV成人无码国产一区二区,激情久久综合精品久久人妻,日韩免费毛片,综合成人亚洲网友偷自拍,国内自拍视频在线观看,欧美熟妇性xxxx交潮喷,国产成人精品一区二免费网站

 
Astronomers capture most distant star ever seen
                 Source: Xinhua | 2018-04-03 03:23:41 | Editor: huaxia

Icarus, whose official name is MACS J1149+2223 Lensed Star 1, is the farthest individual star ever seen. It is only visible because it is being magnified by the gravity of a massive galaxy cluster, located about 5 billion light-years from Earth. Called MACS J1149+2223, this cluster, shown at left, sits between Earth and the galaxy that contains the distant star. The panels at the right show the view in 2011, without Icarus visible, compared with the star's brightening in 2016. (Credit: NASA, ESA, and P. Kelly)

WASHINGTON, April 2 (Xinhua) -- American astronomers have captured the most distant normal star ever observed, some 9 billion light years from Earth, thanks to a rare cosmic alignment.

The study, published on Monday online in the journal Nature Astronomy, revealed the discovery of a star called Icarus, magnified by gravitational lensing by over 2,000 times.

Astronomers routinely study galaxies much farther away, visible because they glow with the brightness of billions of stars. They also managed to study supernova, often brighter than the galaxy in which it sits.

However, for a distance of about 100 million light years, the stars in these galaxies are impossible to make out individually.

But a phenomenon called gravitational lensing, the bending of light by massive galaxy clusters in the line of sight, can magnify the distant universe and make dim, far away objects visible.

The single star was discovered in NASA Hubble Space Telescope images taken in late April of 2016 and as recently as April 2017.

"You can see individual galaxies out there, but this star is at least 100 times farther away than the next individual star we can study, except for supernova explosions," said Patrick Kelly at the University of Minnesota, Twin Cities, the paper's first author.

These observations can provide a rare look at how stars evolve, especially the most luminous ones.

"For the first time ever we're seeing an individual normal star - not a supernova, not a gamma ray burst, but a single stable star - at a distance of nine billion light years," said Alex Filippenko, a professor of astronomy at UC Berkeley and one of many co-authors of the report.

The B-type star Icarus is much larger, more massive, hotter and possibly hundreds of thousands of times intrinsically brighter than our Sun.

According to the researchers, an extended lens, like a galaxy cluster, can only magnify a background object up to 50 times, but smaller objects can magnify much more.

A single star in a foreground lens, if precisely aligned with a background star, can magnify the background star thousands of times.

In this case, a star about the size of our sun briefly passed directly through the line of sight between the distant star Icarus and Hubble, boosting its brightness significantly.

Also, if the alignment was perfect, that single star within the cluster turned the light from the distant star into an "Einstein ring": a halo of light created when light from the distant star bends around all sides of the lensing star.

The ring is too small to discern from this distance, but the effect made the star easily visible by magnifying its apparent brightness.

The astronomers predict that Icarus will be magnified many times over the next decade as cluster stars move around, perhaps increasing its brightness as much as 10,000 times.

Back to Top Close
Xinhuanet

Astronomers capture most distant star ever seen

Source: Xinhua 2018-04-03 03:23:41

Icarus, whose official name is MACS J1149+2223 Lensed Star 1, is the farthest individual star ever seen. It is only visible because it is being magnified by the gravity of a massive galaxy cluster, located about 5 billion light-years from Earth. Called MACS J1149+2223, this cluster, shown at left, sits between Earth and the galaxy that contains the distant star. The panels at the right show the view in 2011, without Icarus visible, compared with the star's brightening in 2016. (Credit: NASA, ESA, and P. Kelly)

WASHINGTON, April 2 (Xinhua) -- American astronomers have captured the most distant normal star ever observed, some 9 billion light years from Earth, thanks to a rare cosmic alignment.

The study, published on Monday online in the journal Nature Astronomy, revealed the discovery of a star called Icarus, magnified by gravitational lensing by over 2,000 times.

Astronomers routinely study galaxies much farther away, visible because they glow with the brightness of billions of stars. They also managed to study supernova, often brighter than the galaxy in which it sits.

However, for a distance of about 100 million light years, the stars in these galaxies are impossible to make out individually.

But a phenomenon called gravitational lensing, the bending of light by massive galaxy clusters in the line of sight, can magnify the distant universe and make dim, far away objects visible.

The single star was discovered in NASA Hubble Space Telescope images taken in late April of 2016 and as recently as April 2017.

"You can see individual galaxies out there, but this star is at least 100 times farther away than the next individual star we can study, except for supernova explosions," said Patrick Kelly at the University of Minnesota, Twin Cities, the paper's first author.

These observations can provide a rare look at how stars evolve, especially the most luminous ones.

"For the first time ever we're seeing an individual normal star - not a supernova, not a gamma ray burst, but a single stable star - at a distance of nine billion light years," said Alex Filippenko, a professor of astronomy at UC Berkeley and one of many co-authors of the report.

The B-type star Icarus is much larger, more massive, hotter and possibly hundreds of thousands of times intrinsically brighter than our Sun.

According to the researchers, an extended lens, like a galaxy cluster, can only magnify a background object up to 50 times, but smaller objects can magnify much more.

A single star in a foreground lens, if precisely aligned with a background star, can magnify the background star thousands of times.

In this case, a star about the size of our sun briefly passed directly through the line of sight between the distant star Icarus and Hubble, boosting its brightness significantly.

Also, if the alignment was perfect, that single star within the cluster turned the light from the distant star into an "Einstein ring": a halo of light created when light from the distant star bends around all sides of the lensing star.

The ring is too small to discern from this distance, but the effect made the star easily visible by magnifying its apparent brightness.

The astronomers predict that Icarus will be magnified many times over the next decade as cluster stars move around, perhaps increasing its brightness as much as 10,000 times.

010020070750000000000000011105091370836751
中文字幕在线视频不卡一区二区| 制服jk白丝h无内视频网站| 国产av永久无码天堂影院| 一区二区三区四区五区自拍| 男女猛烈无遮挡免费视频APP| 97久久综合区小说区图片区| 国产免费好大好硬视频| 视频二区一区国产精品天天| 日韩精品中文字幕亚洲| 久久精品夜夜夜夜夜久久| 玩弄放荡人妻少妇系列| 亚洲精品国产综合一线久久| 国产 欧美 综合 精品一区| 国产福利日本一区二区三区| 性夜夜春夜夜爽夜夜免费视频| 影音先锋大黄瓜视频| 亚洲精品天堂成人片AV在线播放| 亚洲全网成人资源在线观看| 亚洲精品桃花岛av在线| 不卡的亚洲av网在线| 哒哒哒免费视频观看在线www| 成人精品亚洲| 亚洲熟女综合色一区二区三区| 99在线视频免费观看| 久久无码一一区| 五月婷婷影视| 中文人妻av高清一区二区| 成人国产乱对白在线观看| 四虎影视一区二区精品| 亚洲欧美日韩在线观看二区| 国产肉感大码AV无码| 中文字幕无码中文字幕有码 | 成人一区专区在线观看| 91色在线观看| 亚洲AV无码一区二区三区乱子伦| 色欲综合一区二区三区| 中文字幕 日韩 人妻 无码| 亚洲无码精品视频| 亚洲综合色网一区二区三区| 欧洲熟妇色xxxx欧美老妇多毛| 中文字幕巨大的乳专区|