"/>

无码少妇一区二区三区免费,妓院一钑片免看黄大片,国语自产视频在线,亚洲AV成人无码国产一区二区,激情久久综合精品久久人妻,日韩免费毛片,综合成人亚洲网友偷自拍,国内自拍视频在线观看,欧美熟妇性xxxx交潮喷,国产成人精品一区二免费网站

Scientists find two genes in lung cell used by flu to infect hosts

Source: Xinhua    2018-04-11 00:17:37

WASHINGTON, April 10 (Xinhua) -- American researchers have developed a genetic screening tool that identified two key factors that allow the influenza virus to infect human lung cells.

The study, published on Tuesday in the journal Cell Reports, revealed a technique that can create a library of modified cells, each missing a different gene, allowing scientists to see which changes impact their response to flu. This in turn could identify potential targets for antiviral drugs.

"Our current treatments for flu are limited. Vaccines have variable efficacy, and the virus has a propensity to mutate so that antiviral drugs don't work as well," said Julianna Han, a graduate student in microbiology at the University of Chicago and lead author of the study.

"The next wave of antiviral treatments will be in part directed toward the host, so our work helps us get a better understanding of what proteins and pathways are utilized by the influenza virus."

Han and Balaji Manicassamy, assistant professor of microbiology and the senior author of the study, used CRISPR/Cas9 gene editing tools that allow scientists to selectively knock out, or turn off, specific genes.

They created a library of modified human epithelial lung cells, the cells that line the airways and are the first to be infected by the flu virus. Each cell was missing a different gene, creating nearly 19,000 different genetic variations of the cell.

The researchers then exposed the cells to the H5N1 flu strain, a type of influenza A virus commonly known as the bird flu.

They supposed that if the virus was able to infect and kill one of the host cells, that means the gene and the proteins it produces didn't play a role in the virus' ability to replicate.

If the cell survived, that means its modified genome somehow made it resistant to the virus, it was now missing a pathway that the virus relied on to replicate and do its dirty work.

After five rounds of exposing the cells to the H5N1 virus, the researchers were left with a set of cells that were pretty resistant to the flu. When they examined what these hardy survivors had in common, two genes stood out.

One, SLC35A1, encodes a protein that helps create a receptor for the flu on the surface of the cell.

The second gene, CIC, is a negative regulator of the innate immune system, meaning it helps shut down the cell's default immune response to foreign invaders.

When CIC is turned off, other genes that produce antiviral and inflammatory responses are allowed to fire up and fight off the virus, which is why the test cells missing it were resistant to the flu.

But researchers said one couldn't just knock out a gene like CIC permanently as a means to fight the flu. The body needs mechanisms to shut off the immune system once an infection is gone. If not, it could go into overdrive and damage the body's own cells, which is what happens in autoimmune disorders.

On the other hand, certain cancers can exploit a negative regulator like CIC to suppress immune responses while tumor cells run rampant.

Once identifying the two key genes involved in H5N1 response, they exposed the cells to other pathogens to spot any more commonalities.

CIC was also important for all strains of flu and several RNA viruses, or viruses containing RNA genomes. These included respiratory and non-respiratory viruses, highlighting CICs broad effect.

Editor: yan
Related News
Xinhuanet

Scientists find two genes in lung cell used by flu to infect hosts

Source: Xinhua 2018-04-11 00:17:37

WASHINGTON, April 10 (Xinhua) -- American researchers have developed a genetic screening tool that identified two key factors that allow the influenza virus to infect human lung cells.

The study, published on Tuesday in the journal Cell Reports, revealed a technique that can create a library of modified cells, each missing a different gene, allowing scientists to see which changes impact their response to flu. This in turn could identify potential targets for antiviral drugs.

"Our current treatments for flu are limited. Vaccines have variable efficacy, and the virus has a propensity to mutate so that antiviral drugs don't work as well," said Julianna Han, a graduate student in microbiology at the University of Chicago and lead author of the study.

"The next wave of antiviral treatments will be in part directed toward the host, so our work helps us get a better understanding of what proteins and pathways are utilized by the influenza virus."

Han and Balaji Manicassamy, assistant professor of microbiology and the senior author of the study, used CRISPR/Cas9 gene editing tools that allow scientists to selectively knock out, or turn off, specific genes.

They created a library of modified human epithelial lung cells, the cells that line the airways and are the first to be infected by the flu virus. Each cell was missing a different gene, creating nearly 19,000 different genetic variations of the cell.

The researchers then exposed the cells to the H5N1 flu strain, a type of influenza A virus commonly known as the bird flu.

They supposed that if the virus was able to infect and kill one of the host cells, that means the gene and the proteins it produces didn't play a role in the virus' ability to replicate.

If the cell survived, that means its modified genome somehow made it resistant to the virus, it was now missing a pathway that the virus relied on to replicate and do its dirty work.

After five rounds of exposing the cells to the H5N1 virus, the researchers were left with a set of cells that were pretty resistant to the flu. When they examined what these hardy survivors had in common, two genes stood out.

One, SLC35A1, encodes a protein that helps create a receptor for the flu on the surface of the cell.

The second gene, CIC, is a negative regulator of the innate immune system, meaning it helps shut down the cell's default immune response to foreign invaders.

When CIC is turned off, other genes that produce antiviral and inflammatory responses are allowed to fire up and fight off the virus, which is why the test cells missing it were resistant to the flu.

But researchers said one couldn't just knock out a gene like CIC permanently as a means to fight the flu. The body needs mechanisms to shut off the immune system once an infection is gone. If not, it could go into overdrive and damage the body's own cells, which is what happens in autoimmune disorders.

On the other hand, certain cancers can exploit a negative regulator like CIC to suppress immune responses while tumor cells run rampant.

Once identifying the two key genes involved in H5N1 response, they exposed the cells to other pathogens to spot any more commonalities.

CIC was also important for all strains of flu and several RNA viruses, or viruses containing RNA genomes. These included respiratory and non-respiratory viruses, highlighting CICs broad effect.

[Editor: huaxia]
010020070750000000000000011105521371011651
波多吉野一区二区三区av| 国产freexxxx性播放| 成人免费观看在线播放视频| 国产亚洲精品在av| 成人精品一区日本无码网| 国产女人喷潮视频免费| 亚洲精品国产一区二区三区在线观看| 免费无码又爽又刺激网站直播| 精品国产网| 日韩精品中文字幕人妻| 欧美在线视频a| 中文综合在线观| 亚洲一区二区高清精品| 国产精品内射久久久久欢欢| 亚洲孰妇无码av在线播放| 高清无码18| 起碰免费公开97在线视频 | 日韩欧美国产区| 中文字幕佐山爱一区二区免费| 国产成人精品无码一区二| 男人扒开女人内裤强吻桶进去| 久久国产乱子伦免费精品无码 | 永久免费看啪啪的网站中国| 无码人妻精品一区二区不卡| 婷婷开心色四房播播| 亚洲国产成人久久综合一区77| 亚洲国产成人综合一区| 国产99视频精品免费视频7| 人妻少妇久久久久久97人妻| 欧美裸体xxxx极品| 日韩在线精品观看视频| 久久久久久亚洲av无码专区| 亚洲欧美一区二区三区蜜芽| 国产日韩精品秘 入口| 超碰成人人人做人人爽| 亚洲乱色熟女一区二区三区丝袜| 国产99久久99热这里只有精品15| 激情五月婷婷综合网| 最近中文字幕完整版hd| 全部免费毛片免费播放| 日本成人午夜一区二区三区|