"/>

无码少妇一区二区三区免费,妓院一钑片免看黄大片,国语自产视频在线,亚洲AV成人无码国产一区二区,激情久久综合精品久久人妻,日韩免费毛片,综合成人亚洲网友偷自拍,国内自拍视频在线观看,欧美熟妇性xxxx交潮喷,国产成人精品一区二免费网站

Scientists teach computers to recognize cells, using AI

Source: Xinhua    2018-04-13 00:14:10

WASHINGTON, April 12 (Xinhua) -- Biologists and computer scientists are using artificial intelligence (AI) to tell apart cells that haven't been stained and find a wealth of data that scientists can't detect on their own.

A study published on Thursday in the journal Cell has shown how deep learning, a type of machine learning involving algorithms that can analyze data, recognize patterns, and make predictions, is used to pick out features in neurons and other cells.

It's usually quite hard to look at a microscope image of an untreated cell and identify its features. To make cell characteristics visible to the human eye, scientists normally have to use chemicals that can kill the very cells they want to look at.

The study has shown that computers can see details in images without using these invasive techniques, as images contain much more information than was ever thought possible.

Steven Finkbeiner, a director and senior investigator at the Gladstone Institutes, teamed up with computer scientists at Google who customized for him a model with TensorFlow, a popular open-source library for deep learning originally developed by Google AI engineers.

They invented a new deep learning approach called "in silico labeling," in which a computer can find and predict features in images of unlabeled cells. This new method uncovers important information that would otherwise be problematic or impossible for scientists to obtain.

"This is going to be transformative," said Finkbeiner. "Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs."

The deep network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time, according to the researchers.

It was even able to pick out a single dead cell in a mass of live cells. In comparison, people can typically only identify a dead cell with 80 percent accuracy.

Finkbeiner's team realized that once trained, the network can increase the ability and speed with which it learns to perform new tasks. They trained it to accurately predict the location of the cell's nucleus, or command center.

The model can also distinguish between different cell types. For instance, the network can identify a neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite, two different but similar-looking elements of the cell.

They trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels. This process has been repeated millions of times. Then, when they presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.

"The more the model has learned, the less data it needs to learn a new similar task," said Philip Nelson, director of engineering at Google Accelerated Science.

"This kind of transfer learning, where a network applies what it's learned on some types of images to entirely new types, has been a long-standing challenge in AI, and we're excited to have gotten it working so well here," said Nelson.

"This approach has the potential to revolutionize biomedical research," said Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partly funded the study.

Editor: yan
Related News
Xinhuanet

Scientists teach computers to recognize cells, using AI

Source: Xinhua 2018-04-13 00:14:10

WASHINGTON, April 12 (Xinhua) -- Biologists and computer scientists are using artificial intelligence (AI) to tell apart cells that haven't been stained and find a wealth of data that scientists can't detect on their own.

A study published on Thursday in the journal Cell has shown how deep learning, a type of machine learning involving algorithms that can analyze data, recognize patterns, and make predictions, is used to pick out features in neurons and other cells.

It's usually quite hard to look at a microscope image of an untreated cell and identify its features. To make cell characteristics visible to the human eye, scientists normally have to use chemicals that can kill the very cells they want to look at.

The study has shown that computers can see details in images without using these invasive techniques, as images contain much more information than was ever thought possible.

Steven Finkbeiner, a director and senior investigator at the Gladstone Institutes, teamed up with computer scientists at Google who customized for him a model with TensorFlow, a popular open-source library for deep learning originally developed by Google AI engineers.

They invented a new deep learning approach called "in silico labeling," in which a computer can find and predict features in images of unlabeled cells. This new method uncovers important information that would otherwise be problematic or impossible for scientists to obtain.

"This is going to be transformative," said Finkbeiner. "Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs."

The deep network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time, according to the researchers.

It was even able to pick out a single dead cell in a mass of live cells. In comparison, people can typically only identify a dead cell with 80 percent accuracy.

Finkbeiner's team realized that once trained, the network can increase the ability and speed with which it learns to perform new tasks. They trained it to accurately predict the location of the cell's nucleus, or command center.

The model can also distinguish between different cell types. For instance, the network can identify a neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite, two different but similar-looking elements of the cell.

They trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels. This process has been repeated millions of times. Then, when they presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.

"The more the model has learned, the less data it needs to learn a new similar task," said Philip Nelson, director of engineering at Google Accelerated Science.

"This kind of transfer learning, where a network applies what it's learned on some types of images to entirely new types, has been a long-standing challenge in AI, and we're excited to have gotten it working so well here," said Nelson.

"This approach has the potential to revolutionize biomedical research," said Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partly funded the study.

[Editor: huaxia]
010020070750000000000000011105521371069391
亚洲男人天堂东京热加勒比| 好男人视频www在线观看| 9久久伊人精品综合| 中年国产丰满熟女乱子正在播放| 激情综合色综合啪啪开心| 天堂岛国精品在线观看一区二区| 人妻无码精品久久亚瑟影视| 人妻少妇精品久久| 一区二区三区成人| 99精品国产在热久久婷婷| 国产无套护士精品毛片| 狠狠做深爱婷婷综合一区| 国产成人精品一区二区无| 国产免费久久精品99reswag| 免费a级毛片18以上观看精品| 忍不住的亲子中文字幕| 精品免费人成视频网| bbbbbxxxxx欧美性| 52熟女露脸国语对白视频| 精品视频一区二区| JAPANESE国产在线观看播放| 不卡一区二区国产在线| 精品国产高清露脸在线观看| 麻豆aⅴ精品无码一区二区| 麻豆果冻国产剧情av在线播放| 欧美日韩一区二区亚洲| 亚洲欧洲国产综合一区二区| 国产精品久久久尹人香蕉| 日韩一区二区三区不卡片| 99无码中文字幕视频| 思思久久96热在精品国产| 久久男人av资源网站| 天干天干天啪啪夜爽爽av | 亚洲天堂男人| 99久久国产综合精品女图图等你 | 日本国产精品第一页久久| 日本三级理论久久人妻电影| 欧美国产日本精品一区二区三区| 日韩成人高清在线视频| 精品第一国产综合精品蜜芽| 综合色久七七综合尤物|