"/>

无码少妇一区二区三区免费,妓院一钑片免看黄大片,国语自产视频在线,亚洲AV成人无码国产一区二区,激情久久综合精品久久人妻,日韩免费毛片,综合成人亚洲网友偷自拍,国内自拍视频在线观看,欧美熟妇性xxxx交潮喷,国产成人精品一区二免费网站

Scientists teach computers to recognize cells, using AI

Source: Xinhua    2018-04-13 00:14:10

WASHINGTON, April 12 (Xinhua) -- Biologists and computer scientists are using artificial intelligence (AI) to tell apart cells that haven't been stained and find a wealth of data that scientists can't detect on their own.

A study published on Thursday in the journal Cell has shown how deep learning, a type of machine learning involving algorithms that can analyze data, recognize patterns, and make predictions, is used to pick out features in neurons and other cells.

It's usually quite hard to look at a microscope image of an untreated cell and identify its features. To make cell characteristics visible to the human eye, scientists normally have to use chemicals that can kill the very cells they want to look at.

The study has shown that computers can see details in images without using these invasive techniques, as images contain much more information than was ever thought possible.

Steven Finkbeiner, a director and senior investigator at the Gladstone Institutes, teamed up with computer scientists at Google who customized for him a model with TensorFlow, a popular open-source library for deep learning originally developed by Google AI engineers.

They invented a new deep learning approach called "in silico labeling," in which a computer can find and predict features in images of unlabeled cells. This new method uncovers important information that would otherwise be problematic or impossible for scientists to obtain.

"This is going to be transformative," said Finkbeiner. "Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs."

The deep network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time, according to the researchers.

It was even able to pick out a single dead cell in a mass of live cells. In comparison, people can typically only identify a dead cell with 80 percent accuracy.

Finkbeiner's team realized that once trained, the network can increase the ability and speed with which it learns to perform new tasks. They trained it to accurately predict the location of the cell's nucleus, or command center.

The model can also distinguish between different cell types. For instance, the network can identify a neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite, two different but similar-looking elements of the cell.

They trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels. This process has been repeated millions of times. Then, when they presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.

"The more the model has learned, the less data it needs to learn a new similar task," said Philip Nelson, director of engineering at Google Accelerated Science.

"This kind of transfer learning, where a network applies what it's learned on some types of images to entirely new types, has been a long-standing challenge in AI, and we're excited to have gotten it working so well here," said Nelson.

"This approach has the potential to revolutionize biomedical research," said Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partly funded the study.

Editor: yan
Related News
Xinhuanet

Scientists teach computers to recognize cells, using AI

Source: Xinhua 2018-04-13 00:14:10

WASHINGTON, April 12 (Xinhua) -- Biologists and computer scientists are using artificial intelligence (AI) to tell apart cells that haven't been stained and find a wealth of data that scientists can't detect on their own.

A study published on Thursday in the journal Cell has shown how deep learning, a type of machine learning involving algorithms that can analyze data, recognize patterns, and make predictions, is used to pick out features in neurons and other cells.

It's usually quite hard to look at a microscope image of an untreated cell and identify its features. To make cell characteristics visible to the human eye, scientists normally have to use chemicals that can kill the very cells they want to look at.

The study has shown that computers can see details in images without using these invasive techniques, as images contain much more information than was ever thought possible.

Steven Finkbeiner, a director and senior investigator at the Gladstone Institutes, teamed up with computer scientists at Google who customized for him a model with TensorFlow, a popular open-source library for deep learning originally developed by Google AI engineers.

They invented a new deep learning approach called "in silico labeling," in which a computer can find and predict features in images of unlabeled cells. This new method uncovers important information that would otherwise be problematic or impossible for scientists to obtain.

"This is going to be transformative," said Finkbeiner. "Deep learning is going to fundamentally change the way we conduct biomedical science in the future, not only by accelerating discovery, but also by helping find treatments to address major unmet medical needs."

The deep network can identify whether a cell is alive or dead, and get the answer right 98 percent of the time, according to the researchers.

It was even able to pick out a single dead cell in a mass of live cells. In comparison, people can typically only identify a dead cell with 80 percent accuracy.

Finkbeiner's team realized that once trained, the network can increase the ability and speed with which it learns to perform new tasks. They trained it to accurately predict the location of the cell's nucleus, or command center.

The model can also distinguish between different cell types. For instance, the network can identify a neuron within a mix of cells in a dish. It can go one step further and predict whether an extension of that neuron is an axon or dendrite, two different but similar-looking elements of the cell.

They trained the neural network by showing it two sets of matching images of the same cells; one unlabeled and one with fluorescent labels. This process has been repeated millions of times. Then, when they presented the network with an unlabeled image it had never seen, it could accurately predict where the fluorescent labels belong.

"The more the model has learned, the less data it needs to learn a new similar task," said Philip Nelson, director of engineering at Google Accelerated Science.

"This kind of transfer learning, where a network applies what it's learned on some types of images to entirely new types, has been a long-standing challenge in AI, and we're excited to have gotten it working so well here," said Nelson.

"This approach has the potential to revolutionize biomedical research," said Margaret Sutherland, program director at the National Institute of Neurological Disorders and Stroke, which partly funded the study.

[Editor: huaxia]
010020070750000000000000011105521371069391
成人免费无码大片a毛片| 亚洲国产欧美在线看片一国产| 免费中文字幕一级毛片| 无码av孕妇专区| 一区二区亚洲人妻精品| 在线亚洲+欧美+日本专区| 亚洲精品中文字幕尤物综合| 精品人妻伦九区久久aaa片| 女人高潮内射99精品| 国产做a爱免费视频在线观看| 激情内射人妻1区2区3区| 亚洲男同志网站| 国产最大成人亚洲精品| 国产永久免费高清在线观看| 欧美高清视频一区| 国产女奸网站在线观看| 国产亚洲精品自在久久| 亚洲国产日韩a在线播放| 成人看的污污超级黄网站免费| 国产在线不卡一区二区三区| 精品精品国产欧美在线小说区| 国产欧美乱码在线看| 人人妻人人玩人人澡人人爽| 国产资源在线视频| 美女少妇高潮一区二区| 成人av午夜在线观看| 亚洲精品乱码久久久久久中文字幕 | 亚洲第一极品精品无码久久| 国产精品久久无码不卡黑寡妇| 国内精品久久久久久久久电影网| 色天天天综合网色天天| 亚洲性影院| 亚洲色帝国综合婷婷久久| 国产午夜精品福利视频| 国产精品白浆一区二区三区| 亚洲黄色第一页在线观看| 国产欧美精品一区aⅴ影院| 国产三级精品三级在线观看| 玩弄放荡人妇系列av在线网站| √最新版天堂资源在线| 国产18禁黄网站禁片免费视频|