无码少妇一区二区三区免费,妓院一钑片免看黄大片,国语自产视频在线,亚洲AV成人无码国产一区二区,激情久久综合精品久久人妻,日韩免费毛片,综合成人亚洲网友偷自拍,国内自拍视频在线观看,欧美熟妇性xxxx交潮喷,国产成人精品一区二免费网站

 
Insect robot developed with flapping wings but not a leash
                 Source: Xinhua | 2018-05-16 21:39:34 | Editor: huaxia


RoboFly, the first wireless insect-sized flying robot, is slightly heavier than a toothpick. (Credit: Mark Stone/University of Washington)

WASHINGTON, May 15 (Xinhua) -- Engineers at the University of Washington developed a robotic insect slightly heavier than a toothpick and powered by a laser beam.

The robot called "RoboFly" with independent flaps used a tiny onboard circuit that converts the laser energy into enough electricity to operate its wings, according to a news release of the university on Tuesday.

"Before now, the concept of wireless insect-sized flying robots was science fiction. Would we ever be able to make them work without needing a wire?" said Sawyer Fuller, an assistant professor with the university's Department of Mechanical Engineering. "Our new wireless RoboFly shows they're much closer to real life."


To make RoboFly wireless, the engineers designed a flexible circuit (yellow) with a boost converter (copper coil and black boxes at left) that boosts the seven volts coming from the photovoltaic cell into the 240 volts needed for flight. This circuit also has a microcontroller brain (black square box in the top right) that lets RoboFly control its wings. (Credit: Mark Stone/University of Washington)

The engineers said the engineering challenge was the flapping since wing flapping was a power-hungry process, and both the power source and the controller that directs the wings were too big and bulky to ride aboard a tiny robot.

So Fuller's previous robotic insect model had a leash, receiving power and control through wires from the ground.

Now, Fuller's team used a narrow invisible laser beam to power their robot. They pointed the laser beam at a photovoltaic cell, which is attached above RoboFly and converts the laser light into electricity.

However, the laser alone does not provide enough voltage to move the wings. So they designed a circuit that boosted the seven volts coming out of the photovoltaic cell up to the 240 volts needed for flight.

The controller sends voltage in waves to mimic the fluttering of a real insect's wings.

"It uses pulses to shape the wave," said Johannes James, a mechanical engineering doctoral student in the university.

"To make the wings flap forward swiftly, it sends a series of pulses in rapid succession and then slows the pulsing down as you get near the top of the wave. And then it does this in reverse to make the wings flap smoothly in the other direction," said James.

Also, the engineers added a micro-controller to the circuit to control over its wings.

"The micro-controller acts like a real fly's brain telling wing muscles when to fire," said Vikram Iyer, a doctoral student in the university' s Department of Electrical Engineering. "On RoboFly, it tells the wings things like 'flap hard now' or 'don't flap.'"


To power RoboFly the engineers pointed an invisible laser beam (shown here in red laser) at a photovoltaic cell, which is attached above the robot and converts the laser light into electricity. (Credit: Mark Stone/University of Washington)

For now, RoboFly can only take off and land. Once its photovoltaic cell is out of the direct line of sight of the laser, the robot runs out of power and lands.

But the team hoped to soon be able to steer the laser so that RoboFly could hover and fly around.

Future versions could use tiny batteries or harvest energy from radio frequency signals, according to engineers.

"I'd really like to make one that finds methane leaks," Fuller said. "If these robots can make it easy to find leaks, they will be much more likely to be patched up, which will reduce greenhouse emissions."

The team will present its findings on May 23 at the International Conference on Robotics and Automation in Brisbane, Australia.

Back to Top Close
Xinhuanet

Insect robot developed with flapping wings but not a leash

Source: Xinhua 2018-05-16 21:39:34


RoboFly, the first wireless insect-sized flying robot, is slightly heavier than a toothpick. (Credit: Mark Stone/University of Washington)

WASHINGTON, May 15 (Xinhua) -- Engineers at the University of Washington developed a robotic insect slightly heavier than a toothpick and powered by a laser beam.

The robot called "RoboFly" with independent flaps used a tiny onboard circuit that converts the laser energy into enough electricity to operate its wings, according to a news release of the university on Tuesday.

"Before now, the concept of wireless insect-sized flying robots was science fiction. Would we ever be able to make them work without needing a wire?" said Sawyer Fuller, an assistant professor with the university's Department of Mechanical Engineering. "Our new wireless RoboFly shows they're much closer to real life."


To make RoboFly wireless, the engineers designed a flexible circuit (yellow) with a boost converter (copper coil and black boxes at left) that boosts the seven volts coming from the photovoltaic cell into the 240 volts needed for flight. This circuit also has a microcontroller brain (black square box in the top right) that lets RoboFly control its wings. (Credit: Mark Stone/University of Washington)

The engineers said the engineering challenge was the flapping since wing flapping was a power-hungry process, and both the power source and the controller that directs the wings were too big and bulky to ride aboard a tiny robot.

So Fuller's previous robotic insect model had a leash, receiving power and control through wires from the ground.

Now, Fuller's team used a narrow invisible laser beam to power their robot. They pointed the laser beam at a photovoltaic cell, which is attached above RoboFly and converts the laser light into electricity.

However, the laser alone does not provide enough voltage to move the wings. So they designed a circuit that boosted the seven volts coming out of the photovoltaic cell up to the 240 volts needed for flight.

The controller sends voltage in waves to mimic the fluttering of a real insect's wings.

"It uses pulses to shape the wave," said Johannes James, a mechanical engineering doctoral student in the university.

"To make the wings flap forward swiftly, it sends a series of pulses in rapid succession and then slows the pulsing down as you get near the top of the wave. And then it does this in reverse to make the wings flap smoothly in the other direction," said James.

Also, the engineers added a micro-controller to the circuit to control over its wings.

"The micro-controller acts like a real fly's brain telling wing muscles when to fire," said Vikram Iyer, a doctoral student in the university' s Department of Electrical Engineering. "On RoboFly, it tells the wings things like 'flap hard now' or 'don't flap.'"


To power RoboFly the engineers pointed an invisible laser beam (shown here in red laser) at a photovoltaic cell, which is attached above the robot and converts the laser light into electricity. (Credit: Mark Stone/University of Washington)

For now, RoboFly can only take off and land. Once its photovoltaic cell is out of the direct line of sight of the laser, the robot runs out of power and lands.

But the team hoped to soon be able to steer the laser so that RoboFly could hover and fly around.

Future versions could use tiny batteries or harvest energy from radio frequency signals, according to engineers.

"I'd really like to make one that finds methane leaks," Fuller said. "If these robots can make it easy to find leaks, they will be much more likely to be patched up, which will reduce greenhouse emissions."

The team will present its findings on May 23 at the International Conference on Robotics and Automation in Brisbane, Australia.

010020070750000000000000011100001371841721
伊人婷婷色香五月综合缴激情| 免费观看一级欧美大| 无码av不卡免费播放| 最新国产精品中文字幕| 好紧好滑好湿好爽免费视频| 色偷偷亚洲av男人的天堂| 少妇性l交大片7724com| 欧美,日韩aⅴ| 久久国产精品精品国产色| 久久99国产精品成人欧美| 国产乱子伦视频一区二区三区| 男女裸交免费无遮挡全过程| 亚洲熟妇精品一区二区| 搡老熟女老女人一区二区| 午夜福利看片在线观看| 东京一本一道一二三区| 久久久2019精品视频中文字幕| 欧美亚洲综合成人专区| 亚洲一区二区三区在线播放无码| 久久久无码精品国产一区| 亚洲国产成人精品一区刚刚| 亚洲国产精品专区性色av| 无码天堂亚洲国产av麻豆| 视频一区二区不中文字幕| 丝袜老师办公室里做好紧好爽| 夫妇当面交换作爱| 99精品国产99久久久久久97| 久久婷婷五月综合色和| 亚洲av无码牛牛影视在线二区| 激情六月丁香婷婷四房播| 成人国产av精品免费网| 一亚洲一区二区中文字幕| 天堂а√在线中文在线| 日韩欧美一卡2卡3卡4卡无卡免费2020| 国产午夜亚洲精品理论片不卡| 国产精品中文字幕日韩| 午夜A理论片在线播放| 亚洲性日韩精品一区二区| 色国产视频| 中出无码在线观看高清| 亚洲中文有码字幕青青|