无码少妇一区二区三区免费,妓院一钑片免看黄大片,国语自产视频在线,亚洲AV成人无码国产一区二区,激情久久综合精品久久人妻,日韩免费毛片,综合成人亚洲网友偷自拍,国内自拍视频在线观看,欧美熟妇性xxxx交潮喷,国产成人精品一区二免费网站

 
Scientists suggest a new tactic for starving tumors
                 Source: Xinhua | 2018-06-26 03:31:23 | Editor: huaxia

In this tumor, imaged in a mouse model of breast cancer, oxygen-low areas appear in green. These regions tend to resist standard cancer treatments. (Credit: Laboratory of Metabolic Regulation and Genetics at The Rockefeller University)

WASHINGTON, June 25 (Xinhua) -- American researchers found a potential new tactic against cancer: starving tumors by depriving them of a crucial protein they must utilize.

A study published on Monday in the journal Nature Cell Biology revealed that some ever-dividing tumor cells struggled to make enough aspartate with limited oxygen supply, possibly lending a target for cancer treatment.

Scientists from the Rockefeller University already knew that when certain tumors had outgrown their blood supply, they grew slowly under low-oxygen conditions. The oxygen molecule would participate in a vast number of a cell's chemical reactions, any of which could be limiting its growth.

They mimicked oxygen deprivation in cancer cells harvested from 28 patients, including cancers from blood, stomach, breast, colon and lung, which they cultured in the lab.

Many of these cells exhibited stunted growth under low-oxygen-like conditions. In the sensitive cells, a lack of aspartate would affect not only the production of new proteins, but also several other processes that rely on aspartate, such as the synthesis of genetic material, according to the study.

However, there's other tumors that were less sensitive, and some weren't bothered at all by the treatment.

In comparing these cells' production of chemicals, or metabolites, Javier Garcia-Bermudez, a postdoctoral associate at the university, noticed that the most sensitive ones lost the amino acid aspartate under oxygen deprivation.

Cells can't make aspartate without oxygen, but it seemed as if the resistant cells were able to obtain it from their environment, according to Garcia-Bermudez.

The researchers found there was something special about many of the cancers that resisted oxygen deprivation: they turned on a gene called SLC1A3 to suck up aspartate from their surroundings.

When Garcia-Bermudez turned on this gene in the lab-grown cancers that were normally sensitive to low oxygen, they grew faster.

The discovery might offer opportunities for creating drugs to stab cancers in this particular Achilles' heel, making them even hungrier for aspartate.

There might be several ways to prevent cancer cells from getting aspartate by blocking their methods to make the amino acid or take it up from their surroundings, according to the researchers.

If they are right, an anti-aspartate treatment might one day provide a supplement to typical chemotherapy and radiation, and it could potentially be effective for any type of tumor containing oxygen-starved areas.

Kivanc Birsoy, head of the Laboratory of Metabolic Regulation and Genetics at the university, envisioned a sort of one-two punch: One treatment for the parts of a tumor that are well-supplied with oxygen, and an aspartate blocker for the rest.

That sort of drug combination is still a long ways off, however. Birsoy now planned to investigate possible drugs that would interfere with aspartate production in the lab.

Back to Top Close
Xinhuanet

Scientists suggest a new tactic for starving tumors

Source: Xinhua 2018-06-26 03:31:23

In this tumor, imaged in a mouse model of breast cancer, oxygen-low areas appear in green. These regions tend to resist standard cancer treatments. (Credit: Laboratory of Metabolic Regulation and Genetics at The Rockefeller University)

WASHINGTON, June 25 (Xinhua) -- American researchers found a potential new tactic against cancer: starving tumors by depriving them of a crucial protein they must utilize.

A study published on Monday in the journal Nature Cell Biology revealed that some ever-dividing tumor cells struggled to make enough aspartate with limited oxygen supply, possibly lending a target for cancer treatment.

Scientists from the Rockefeller University already knew that when certain tumors had outgrown their blood supply, they grew slowly under low-oxygen conditions. The oxygen molecule would participate in a vast number of a cell's chemical reactions, any of which could be limiting its growth.

They mimicked oxygen deprivation in cancer cells harvested from 28 patients, including cancers from blood, stomach, breast, colon and lung, which they cultured in the lab.

Many of these cells exhibited stunted growth under low-oxygen-like conditions. In the sensitive cells, a lack of aspartate would affect not only the production of new proteins, but also several other processes that rely on aspartate, such as the synthesis of genetic material, according to the study.

However, there's other tumors that were less sensitive, and some weren't bothered at all by the treatment.

In comparing these cells' production of chemicals, or metabolites, Javier Garcia-Bermudez, a postdoctoral associate at the university, noticed that the most sensitive ones lost the amino acid aspartate under oxygen deprivation.

Cells can't make aspartate without oxygen, but it seemed as if the resistant cells were able to obtain it from their environment, according to Garcia-Bermudez.

The researchers found there was something special about many of the cancers that resisted oxygen deprivation: they turned on a gene called SLC1A3 to suck up aspartate from their surroundings.

When Garcia-Bermudez turned on this gene in the lab-grown cancers that were normally sensitive to low oxygen, they grew faster.

The discovery might offer opportunities for creating drugs to stab cancers in this particular Achilles' heel, making them even hungrier for aspartate.

There might be several ways to prevent cancer cells from getting aspartate by blocking their methods to make the amino acid or take it up from their surroundings, according to the researchers.

If they are right, an anti-aspartate treatment might one day provide a supplement to typical chemotherapy and radiation, and it could potentially be effective for any type of tumor containing oxygen-starved areas.

Kivanc Birsoy, head of the Laboratory of Metabolic Regulation and Genetics at the university, envisioned a sort of one-two punch: One treatment for the parts of a tumor that are well-supplied with oxygen, and an aspartate blocker for the rest.

That sort of drug combination is still a long ways off, however. Birsoy now planned to investigate possible drugs that would interfere with aspartate production in the lab.

010020070750000000000000011105091372803221
亚洲香蕉av一区二区蜜桃| 美女极度色诱视频国产免费| 久久精品国产亚洲欧美| 乱子伦av无码中文字幕| 成人中文在线| 国产a在视频线精品视频下载| 亚洲乱码日产精品bd在线| 精品视频一区二区| 97人人添人人澡人人澡人人澡| 久久亚洲人成网站| 精品久久久久久无码免费| 天堂a无码a无线孕交| 乱码中文字幕| 午夜福利一区二区91| 一级毛片免费不卡在线视频| 无码毛片一区二区本码视频| 欧美日韩不卡高清在线看| 韩国精品视频一区二区在线播放 | brazzers欧美丰满| 亚欧免费无码AⅤ在线观看| 少妇人妻偷人精品免费视频| 日韩三级一区二区在线看| 国产91麻豆视频| 欧美日韩国产在线观看免费| 人妻老妇乱子伦精品无码专区| 午夜亚洲国产理论片4080| 国产精品一国产AV麻豆| 国产在线尤物在线不卡网站| 国产91精品丝袜美腿在线| 91精品国产免费人成网站| 国产乱色国产精品免费视频 | 亚洲人成无码网站18禁| 国产成人毛片无码视频软件| 孕妇奶水仑乱A级毛片在线播放| 亚洲AVAV天堂AV在线网爱情| 狠狠色丁香婷婷亚洲综合| 国产成人精品无码一区二区| 年轻女教师hd中字3| 无码熟妇人妻av在线电影| 一本色道久久综合中文字幕| 全网手机av免费在线播放|