无码少妇一区二区三区免费,妓院一钑片免看黄大片,国语自产视频在线,亚洲AV成人无码国产一区二区,激情久久综合精品久久人妻,日韩免费毛片,综合成人亚洲网友偷自拍,国内自拍视频在线观看,欧美熟妇性xxxx交潮喷,国产成人精品一区二免费网站

 
Six tiger subspecies confirmed by genetic study
                 Source: Xinhua | 2018-10-26 05:22:35 | Editor: huaxia

A 45-day-old bengal tiger cub (Panthera Tigris Tigris), is pictured at the Wild Shelter Foundation (FURESA) in Jayaque, 40 kilometres west of San Salvador, on Jan. 31, 2017. (AFP Photo)

WASHINGTON, Oct. 25 (Xinhua) -- An international team led by Chinese researchers analyzed the complete genomes of 32 representative tiger specimens and confirmed that tigers indeed fall into six genetically distinct groups.

These six subspecies include the Bengal tiger, Amur tiger, South China tiger, Sumatran tiger, Indochinese tiger, and Malayan tiger, according to the study published on Thursday in the journal Current Biology.

Fewer than 4,000 free-ranging tigers remain in the wild. Efforts to protect these remaining tigers have also been stymied by uncertainty about whether they represent six, five or only two subspecies.

"This study is the first to reveal the tiger's natural history from a whole-genomic perspective. It provides robust, genome-wide evidence for the origin and evolution of this charismatic megafauna species," said the paper's senior author Luo Shujin with Peking University.

Luo's team and colleagues from Russia and the United States realized that genome-wide screening was also the only way to look for signals that distinct groups of tigers have undergone natural selection to adapt to the environments of the distinct geographic regions they inhabit.

Fossil evidence showed that tigers go back two to three million years, but the genomic evidence revealed that all living tigers only traced back to a time about 110,000 years ago, when tigers suffered a historic population bottleneck, according to the study.

The genomic evidence also showed that there was very little gene flow among tiger populations.

Despite the tiger's low genetic diversity, the pattern across groups is highly structured, offering evidence that these subspecies each have a unique evolutionary history.

The researchers said that's quite unique among the big cats since several other species, such as the jaguar, have shown much more evidence of intermixing across whole continents.

Tiger subspecies have distinct features, according to the study. For example, Amur tigers are large with pale orange fur, while Sumatran tigers in the Sunda Islands tend to be smaller with darker, thickly striped fur.

"In the end, we were quite amazed that, by performing a stepwise genome-wide scan, seven regions including 14 genes stood out as the potential regions subject for selection," said Luo.

The strongest signal of selection they found was in the Sumatran tiger, across a genomic region that contains the body-size-related ADH7 gene.

The researchers suggested that the Sumatran tiger might have been selected for smaller size to reduce its energy demands, allowing it to survive on the island's smaller prey animals, such as wild pigs and muntjac, a small deer.

"Tigers are not all alike," said Luo. "Tigers from Russia are evolutionarily distinct from those from India. Even tigers from Malaysia and Indonesia are different."

However, the origin of the South China tiger remained unresolved since only one specimen from captivity was used in this study since this subspecies has gone extinct in the wild.

The researchers plan to study old specimens with known origin from all over China to fill in the missing pieces of living tigers' evolutionary history.

They're also retrieving genomic information from historical specimens, including those representing the extinct Caspian, Javan, and Bali tigers.

Back to Top Close
Xinhuanet

Six tiger subspecies confirmed by genetic study

Source: Xinhua 2018-10-26 05:22:35

A 45-day-old bengal tiger cub (Panthera Tigris Tigris), is pictured at the Wild Shelter Foundation (FURESA) in Jayaque, 40 kilometres west of San Salvador, on Jan. 31, 2017. (AFP Photo)

WASHINGTON, Oct. 25 (Xinhua) -- An international team led by Chinese researchers analyzed the complete genomes of 32 representative tiger specimens and confirmed that tigers indeed fall into six genetically distinct groups.

These six subspecies include the Bengal tiger, Amur tiger, South China tiger, Sumatran tiger, Indochinese tiger, and Malayan tiger, according to the study published on Thursday in the journal Current Biology.

Fewer than 4,000 free-ranging tigers remain in the wild. Efforts to protect these remaining tigers have also been stymied by uncertainty about whether they represent six, five or only two subspecies.

"This study is the first to reveal the tiger's natural history from a whole-genomic perspective. It provides robust, genome-wide evidence for the origin and evolution of this charismatic megafauna species," said the paper's senior author Luo Shujin with Peking University.

Luo's team and colleagues from Russia and the United States realized that genome-wide screening was also the only way to look for signals that distinct groups of tigers have undergone natural selection to adapt to the environments of the distinct geographic regions they inhabit.

Fossil evidence showed that tigers go back two to three million years, but the genomic evidence revealed that all living tigers only traced back to a time about 110,000 years ago, when tigers suffered a historic population bottleneck, according to the study.

The genomic evidence also showed that there was very little gene flow among tiger populations.

Despite the tiger's low genetic diversity, the pattern across groups is highly structured, offering evidence that these subspecies each have a unique evolutionary history.

The researchers said that's quite unique among the big cats since several other species, such as the jaguar, have shown much more evidence of intermixing across whole continents.

Tiger subspecies have distinct features, according to the study. For example, Amur tigers are large with pale orange fur, while Sumatran tigers in the Sunda Islands tend to be smaller with darker, thickly striped fur.

"In the end, we were quite amazed that, by performing a stepwise genome-wide scan, seven regions including 14 genes stood out as the potential regions subject for selection," said Luo.

The strongest signal of selection they found was in the Sumatran tiger, across a genomic region that contains the body-size-related ADH7 gene.

The researchers suggested that the Sumatran tiger might have been selected for smaller size to reduce its energy demands, allowing it to survive on the island's smaller prey animals, such as wild pigs and muntjac, a small deer.

"Tigers are not all alike," said Luo. "Tigers from Russia are evolutionarily distinct from those from India. Even tigers from Malaysia and Indonesia are different."

However, the origin of the South China tiger remained unresolved since only one specimen from captivity was used in this study since this subspecies has gone extinct in the wild.

The researchers plan to study old specimens with known origin from all over China to fill in the missing pieces of living tigers' evolutionary history.

They're also retrieving genomic information from historical specimens, including those representing the extinct Caspian, Javan, and Bali tigers.

010020070750000000000000011100001375587111
亚洲av综合色区手机| 香港一级毛片免费看| 欧美性爱精品一区二区三区| 不卡在线一区二区三区视频| 亚洲综合一区二区国产精品| 日本一区二区三区在线 |观看| 无码国产精品一区二区免费97| 久久麻豆精亚洲av品国产精品| 亚洲日韩久热中文字幕| 91人妻一区二区三区蜜桃精品| 国产婷婷精品av在线| 久操资源站| 亚洲国产精品久久一线不卡| 亚洲精品久久久一二三区| 曰批免费视频播放免费直播| 久久久久久久久久久久中文字幕| 她也色tayese在线视频 | 波多野结衣AV一区二区全免费观看| 亚洲一区二区三区av在线免费 | www中文字幕在线观看| 奇米影视一区二区三区| 国产高清自产拍AV在线| 亚洲天堂激情av在线| 成年午夜免费韩国做受视频| 人妻少妇精品无码系列| 国产性自爱拍偷在在线播放| 狠狠色狠狠爱综合蜜芽五月| 国产日韩精品视频无码| 人妻少妇精品无码专区二区| 国产主播福利在线观看| 国产成人丝袜精品视频app| 亚洲精品精品日本日本| 日韩人妻无码精品久久| 无码精品久久一区二区三区| 日韩在线中文字幕一区 | 亚洲av免费不卡一区二区| 国产毛片久久久久久国产毛片 | 国产在线拍揄自揄拍无码视频| 国产拗精品一区二区三区| 视频一区视频二区在线视频| 中文字幕亚洲精品人妻|