无码少妇一区二区三区免费,妓院一钑片免看黄大片,国语自产视频在线,亚洲AV成人无码国产一区二区,激情久久综合精品久久人妻,日韩免费毛片,综合成人亚洲网友偷自拍,国内自拍视频在线观看,欧美熟妇性xxxx交潮喷,国产成人精品一区二免费网站

 
Pets can tell time: study
                 Source: Xinhua | 2018-11-04 00:23:13 | Editor: huaxia

A staff members poses with a dog during a 'Wuffstock' Halloween event, at the Morristown Animal Inn in Morristown, New Jersey, U.S., October 26, 2018. Picture taken October 26, 2018. (Xinhua/REUTERS)

CHICAGO, Nov. 3 (Xinhua) -- A study from Northwestern University (NU) has found some of the clearest evidence that animals can judge time. By examining the brain's medial entorhinal cortex, the researchers discovered a previously unknown set of neurons that turn on like a clock when an animal is waiting.

NU researchers set up an experiment called the virtual "door stop" task. In the experiment, a mouse runs on a physical treadmill in a virtual reality environment. The mouse learns to run down a hallway to a door that is located about halfway down the track. After six seconds, the door opens, allowing the mouse to continue down the hallway to receive its reward.

After running several training sessions, researchers made the door invisible in the virtual reality scene. In the new scenario, the mouse still knew where the now-invisible "door" was located based on the floor's changing textures. And it still waited six seconds at the "door" before abruptly racing down the track to collect its reward.

"The important point here is that the mouse doesn't know when the door is open or closed because it's invisible," said James Heys, a postdoctoral fellow at NU and the study's first author. "The only way he can solve this task efficiently is by using his brain's internal sense of time."

NU researchers took the experiment one step further by imaging the mice's brain activity. Using two-photon microscopy, which allows advanced, high-resolution imaging of the brain, they watched the mice's neurons fire.

"As the animals run along the track and get to the invisible door, we see the cells firing that control spatial encoding," said Daniel Dombeck, an associate professor of neurobiology in NU's Weinberg College of Arts and Sciences. "Then, when the animal stops at the door, we see those cells turned off and a new set of cells turn on. This was a big surprise and a new discovery."

"Not only are the cells active during rest," he said, "but they actually encode how much time the animal has been resting."

The researchers have found these new time-encoding neurons, now they can study how neurodegenerative diseases might affect this set of cells.

"Patients with Alzheimer's disease notably forget when things happened in time," Heys said. "Perhaps this is because they are losing some of the basic functions of the entorhinal cortex, which is one of the first brain regions affected by the disease."

"So this could lead to new early-detection tests for Alzheimer's," Dombeck added. "We could start asking people to judge how much time has elapsed or ask them to navigate a virtual reality environment - essentially having a human do a 'door stop' task."

The study has been published online in the journal Nature Neuroscience.

Back to Top Close
Xinhuanet

Pets can tell time: study

Source: Xinhua 2018-11-04 00:23:13

A staff members poses with a dog during a 'Wuffstock' Halloween event, at the Morristown Animal Inn in Morristown, New Jersey, U.S., October 26, 2018. Picture taken October 26, 2018. (Xinhua/REUTERS)

CHICAGO, Nov. 3 (Xinhua) -- A study from Northwestern University (NU) has found some of the clearest evidence that animals can judge time. By examining the brain's medial entorhinal cortex, the researchers discovered a previously unknown set of neurons that turn on like a clock when an animal is waiting.

NU researchers set up an experiment called the virtual "door stop" task. In the experiment, a mouse runs on a physical treadmill in a virtual reality environment. The mouse learns to run down a hallway to a door that is located about halfway down the track. After six seconds, the door opens, allowing the mouse to continue down the hallway to receive its reward.

After running several training sessions, researchers made the door invisible in the virtual reality scene. In the new scenario, the mouse still knew where the now-invisible "door" was located based on the floor's changing textures. And it still waited six seconds at the "door" before abruptly racing down the track to collect its reward.

"The important point here is that the mouse doesn't know when the door is open or closed because it's invisible," said James Heys, a postdoctoral fellow at NU and the study's first author. "The only way he can solve this task efficiently is by using his brain's internal sense of time."

NU researchers took the experiment one step further by imaging the mice's brain activity. Using two-photon microscopy, which allows advanced, high-resolution imaging of the brain, they watched the mice's neurons fire.

"As the animals run along the track and get to the invisible door, we see the cells firing that control spatial encoding," said Daniel Dombeck, an associate professor of neurobiology in NU's Weinberg College of Arts and Sciences. "Then, when the animal stops at the door, we see those cells turned off and a new set of cells turn on. This was a big surprise and a new discovery."

"Not only are the cells active during rest," he said, "but they actually encode how much time the animal has been resting."

The researchers have found these new time-encoding neurons, now they can study how neurodegenerative diseases might affect this set of cells.

"Patients with Alzheimer's disease notably forget when things happened in time," Heys said. "Perhaps this is because they are losing some of the basic functions of the entorhinal cortex, which is one of the first brain regions affected by the disease."

"So this could lead to new early-detection tests for Alzheimer's," Dombeck added. "We could start asking people to judge how much time has elapsed or ask them to navigate a virtual reality environment - essentially having a human do a 'door stop' task."

The study has been published online in the journal Nature Neuroscience.

010020070750000000000000011105091375798171
精品丝袜一区二区三区性色| 久久综合色天堂av| 亚洲伊人久久综合影院| 丝袜美腿亚洲综合伊人| 一区二区精品视频日本| 久久精品国产福利国产秒拍| 亚洲AV无码一区东京热久久| 两个人免费完整高清视频| 久久一日本综合色鬼综合色| 亚洲成av人片天堂网| dy888午夜| 国产成人午夜福利在线播放| 亚洲国产精品色一区二区 | 777久久精品一区二区三区无码| 亚洲AV无码精品一二三区推荐| 国产精品偷伦免费观看的| 国产精品日本一区二区不卡视频| 国产欧美乱码在线看| 国产精品va在线观看无码不卡| 国产一区二区三区精品综合 | 好爽好硬好深高潮视频456| av观看一区二区三区| 亚洲欧美国产一区二区三区| 欧美黑人添添高潮a片www| 国产成人AV不卡免费观看| 97一区二区在线播放| a级毛片无码免费真人久久| 高清日韩一区二区三区视频| 欧美成年性h版影视中文字幕 | 永久免费在线观看蜜桃视频 | 久久久精品人妻一区二区三区| 日本中文字幕久久网站| 国产成人亚洲综合图区| 精品日韩人妻中文字幕| 亚洲a毛片| 国产亚洲综合区成人国产| 久久蜜臀一区二区三区av| 蜜桃av区一区二区三| 91亚洲国产三上悠亚在线播放| 韩国三级+mp4| 好爽轻点太大了太深了|