无码少妇一区二区三区免费,妓院一钑片免看黄大片,国语自产视频在线,亚洲AV成人无码国产一区二区,激情久久综合精品久久人妻,日韩免费毛片,综合成人亚洲网友偷自拍,国内自拍视频在线观看,欧美熟妇性xxxx交潮喷,国产成人精品一区二免费网站

China Focus: Data-labeling: the human power behind Artificial Intelligence

Source: Xinhua| 2019-01-17 20:42:21|Editor: ZX
Video PlayerClose

BEIJING, Jan. 17 (Xinhua) -- In a five-story building on the outskirts of Beijing, 22-year-old Zhang Yusen stares at a computer screen, carefully drawing boxes around cars in street photos.

As artificial voices replace human customer services in call centers and robots replace workers on production lines, Zhang, a vocational school graduate, has found a steady job: data-labeling, a new industry laying the groundwork for the development of AI technologies.

SUPERVISED LEARNING

As the "artificial" part of AI, data labeling receives much less media attention than the "intelligence" part of computer algorithms.

Facial recognition, self-driving, diagnosis of tumors by computer systems and the defeat of best human Go player by Alpha Go are ways AI technologies have amazed in recent years.

However, for researchers, the current AI technologies are still quite limited and at an early stage.

Professor Chen Xiaoping, director of Robotics Lab at the University of Science and Technology of China, said all AI technologies so far have come from "supervised" learning in which an AI system is trained with specific forms of data.

Take training a machine to recognize dogs for instance: the system must be fed vast numbers of pictures labeled by humans to tell the system which pictures have dogs and which don't.

Chen noted the human brain is excellent at processing unknown information with reasoning, but it is still impossible for AI. A kindergartener can make the guess of soccer ball from clues like "a black and white round object you can kick," but it's not a easy task for AI. An AI system might be able to tell all different kinds of dogs, but it cannot tell a stuffed animal is not real if such images are not sent to the system.

Yann LeCun, AI scientist at Facebook and widely considered one of the "godfathers" of machine-learning, said recently, "Our best AI systems have less common sense than a house cat."

Behind powerful AI algorithms are vast complicated dataset built and labeled by humans.

ImageNet is one of the world's largest visual databases designed to train AI systems to see. According to its inventors, it took nearly 50,000 people in 167 countries and regions to clean, sort and label nearly a billion images over more than three years.

QUALITY CHECKING

For top researchers like Chen Xiaoping, the next AI breakthrough is expected in self-supervised or unsupervised learning in which AI systems learn without human labeling. But no one knows when it will happen.

"I think in the next five to 10, maybe 15 years, AI systems will still rely on labeled data." said Du Lin, CEO and founder of data-labeling firm BasicFinder.

Du published his first paper about computer vision when he was in high school. After graduating from college, his first windfall came from selling a startup data-digging firm for 4 million U.S. dollars.

In 2014, Du and his partners noticed the rise of AI deep-learning and founded BasicFinder. The company is now a leading data-labeling company, with clients including Stanford University, the Chinese Academy of Sciences, China Mobile and Chinese AI startup SenseTime.

At BasicFinder, a typical work flow starts with taggers like Zhang Yusen. After training two to three months, they draw boxes around cars and pedestrians in street photos, tag ancient German letters, or transcribe snatches of speech.

The labeled images are submitted to quality inspectors who check 2,000 pictures a day. If one image is found inaccurately tagged in every 500 images in random checks, the company is not paid the original price. If the error rate exceeds 1 percent, clients can ask to change data-taggers.

Du said the company has been optimizing work flow to ensure greater accuracy as well as to protect intellectual property and privacy.

HUMAN IN LOOP

A model that requires human interaction is called "human in the loop" and humans remain in the loop much longer than many have expected, said Du.

Data-taggers now work on outsourcing platforms as far afield as Mexico, Kenya, India and Venezuela. Anyone can create an account to become a freelance data-tagger.

But Du strongly disagrees that data-labeling companies, depicted in some media reports as "the dirty little secret" of AI, resemble Foxconn's infamous iPhone factories.

He noted that due to the nature of AI deep-learning, it is the greater accuracy of labeled data that keeps a company alive and thriving, rather than low prices and cheap labor.

China's Caijing magazine reported in October last year that about half of data-labeling companies in China's Henan Province went bust in 2018 as orders dried up.

Du said that in the past two years, many found data-labeling a tough market. The first spurt of growth has ended and a lot of workshop-like companies have been knocked out.

A full-time data-tagger at BasicFinder can earn 6,000 to 7,000 yuan a month, along with accommodation and social benefits. In the first three quarters of 2018, the disposable income per capita in Beijing was 46,426 yuan, around 5,158 yuan a month, according to local government statistics.

Zhang Yusen and his girlfriend, who also works at BasicFinder as a quality inspector are so far enjoying their work.

TOP STORIES
EDITOR’S CHOICE
MOST VIEWED
EXPLORE XINHUANET
010020070750000000000000011100001377521541
色欧美片视频在线观看| 久久综合一个色综合网| 偷自拍另类亚洲清纯唯美| 116美女极品a级毛片| 无码国产精品一区二区VR老人| 亚洲精品有码在线观看| 中文字幕久久久久人妻| 亚洲国产精品无码一区二区三区| 亚洲日本国产乱码va在线观看| 人妻少妇无码精品专区| 午夜AAAAA级岛国福利在线| 久久精品成人免费看| 亚洲AV天天做在线观看| 无遮挡一级毛片视频| 自拍偷自拍亚洲精品情侣| 麻豆国产传媒精品视频| 日韩无套无码精品| 中文国产不卡一区二区| 麻豆精品一区二区三区蜜臀| 国产精品综合在线免费看| 日本精品videossex 黑人| 老鸭窝在线视频| 少妇高潮喷水久久久久久久久久 | 99re热精品视频国产免费| 久久综合色之久久综合| 国产老熟女国语免费视频| 国产性感丝袜美女av| 国产成人精品97| 国产农村妇女精品一二区| 成人中文在线| 日本a在线播放| 国产精品一级av一区二区| 加勒比一区二区三区精品| 亚洲av岛国片在线观看| 欧美日韩综合网| 亚洲精品亚洲中文字幕| 亚洲日本欧美中文幕| 四虎在线播放无码| 国产青榴视频在线观看| 国产福利片无码区在线观看| 久久精品女人av天堂|